Review

Coordination Polymer Surface Chemistry and Enzyme Interaction Mechanisms: Molecular Recognition and Binding

Peng Zhao 1,*

- ¹ Baylor University, Waco, Texas 76798, USA
- * Correspondence: Peng Zhao, Baylor University, Waco, Texas 76798, USA

Abstract: Coordination polymers represent a rapidly advancing class of materials with exceptional potential for enzyme immobilization and molecular recognition applications. This comprehensive review examines the fundamental mechanisms governing surface chemistry interactions between coordination polymers and enzymes, focusing on molecular recognition principles and binding dynamics. The unique structural properties of coordination polymers, including their tunable porosity, functional group diversity, and metal node reactivity, create versatile platforms for enzyme stabilization and enhanced catalytic activity. This study explores the relationship between coordination polymer architecture and enzyme binding affinity, examining how surface functionalization influences protein-material interactions. Key findings demonstrate that metalorganic framework surfaces can be engineered to provide specific recognition sites that enhance enzyme selectivity and stability through electrostatic interactions, hydrogen bonding, and van der Waals forces. The investigation reveals that coordination polymer surface chemistry plays a critical role in maintaining enzyme conformational integrity while facilitating efficient substrate access. Furthermore, the research highlights innovative approaches for creating multifunctional coordination polymer systems that combine enzyme immobilization with selective molecular recognition capabilities. These advances have significant implications for biotechnology applications, including biosensing, biocatalysis, and therapeutic enzyme delivery systems. The comprehensive analysis of molecular recognition mechanisms provides valuable insights for designing next-generation coordination polymer-enzyme hybrid materials with enhanced performance characteristics.

Keywords: coordination polymers; enzyme immobilization; molecular recognition; surface chemistry; protein interactions; biocatalysis

Received: 11 August 2025 Revised: 07 September 2025 Accepted: 02 October 2025 Published: 14 October 2025

Copyright: © 2025 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/license s/by/4.0/).

1. Introduction

Coordination polymers have emerged as a revolutionary class of materials that bridge the gap between inorganic and organic chemistry, offering unprecedented opportunities for creating sophisticated enzyme-material interfaces [1]. Their crystalline structures, formed by connecting metal ions or clusters with organic ligands, provide a versatile platform for designing functional materials. Recent studies have highlighted that these polymers can be tailored to meet specific requirements, such as enhanced stability or selective binding, which is particularly valuable for biotechnological applications [2,3].

The unique structural features of coordination polymers make them exceptionally suitable for enzyme immobilization and molecular recognition applications [1]. Their inherent porosity allows substrates to diffuse efficiently to active sites, while the chemical tunability enables fine adjustments of surface properties to match enzyme requirements. Chen et al. demonstrated that careful design of the polymer architecture can significantly enhance enzyme compatibility, preserving catalytic activity under challenging conditions [4].

Interactions between enzymes and coordination polymer surfaces are governed by complex molecular recognition mechanisms [5]. These mechanisms dictate binding affinity, selectivity, and overall catalytic efficiency. Understanding such interactions is crucial for developing materials that can stabilize enzymes without compromising their native functions. In addition, the surface chemistry of coordination polymers can be precisely controlled through ligand selection, metal node modification, and post-synthetic functionalization strategies [6]. These approaches allow the creation of tailored microenvironments that optimize enzyme-material interactions.

Recent advances in coordination polymer design have enabled the development of multifunctional systems [7]. For example, Mei et al. reported polymers capable of simultaneous stabilization and activity enhancement of enzymes, opening new possibilities for industrial biocatalysis [8]. Xie et al. further illustrated that such materials can be engineered to provide multiple interaction sites, increasing enzyme loading and improving catalytic efficiency [2]. These properties give coordination polymers an advantage over traditional enzyme immobilization supports, such as silica or polymer beads, which often lack structural tenability and high surface area.

The molecular recognition capabilities of coordination polymers extend beyond simple physical adsorption [9]. They involve specific interactions between functional groups on enzymes and the polymer surfaces, which can be fine-tuned through rational design strategies [10]. Hu et al. and Chen et al. highlighted that such precise control can optimize enzyme orientation and binding strength, leading to improved stability and catalytic performance [4,11]. Understanding these principles is essential for designing next-generation enzyme-polymer materials that meet practical application demands.

2. Coordination Polymer Architecture and Surface Properties

2.1. Structural Characteristics of Coordination Polymers

Coordination polymers exhibit diverse structural architectures that directly influence their surface properties and enzyme interaction capabilities. The three-dimensional framework structures provide high surface areas and tunable pore environments that can accommodate enzymes of varying sizes and shapes [1]. The metal nodes in these structures serve as primary binding sites for enzyme attachment, offering coordination sites that can interact with amino acid residues through electrostatic interactions and coordination bonding. The organic ligands contribute to the overall surface chemistry by providing functional groups that can engage in hydrogen bonding, π - π interactions, and hydrophobic interactions with enzyme surfaces.

The framework topology plays a crucial role in determining the accessibility of enzyme binding sites and the efficiency of substrate transport within the porous structure. Open framework architectures with large pore apertures facilitate enzyme encapsulation while maintaining structural integrity [6]. The interconnected pore networks enable efficient mass transfer of substrates and products, which is essential for maintaining high catalytic activity in immobilized enzyme systems. The flexibility of certain coordination polymer frameworks allows for dynamic adaptation to enzyme conformational changes during catalytic cycles. Table 1 summarizes the key structural parameters of coordination polymers relevant to enzyme immobilization applications, including surface area characteristics, pore dimensions, and metal node coordination environments.

Table 1. Structural Parameters of Coordination Polymers for Enzyme Immobilization.

Parameter	Range	Impact on Enzyme Interaction
Surface Area (m²/g)	500-2000	High surface area provides more binding sites
Pore Size (Å)	10-50	Must accommodate enzyme dimensions
Metal Node Coordination	4-12	Determines binding site availability
Framework Flexibility	Low-High	Affects enzyme conformational freedom
Functional Group Density	Variable	Controls interaction strength

2.2. Surface Functionalization Strategies

The surface chemistry of coordination polymers can be systematically modified through various functionalization approaches to enhance enzyme compatibility and binding affinity. Post-synthetic modification techniques allow for the introduction of specific functional groups that can interact favorably with enzyme surfaces without disrupting the overall framework structure [12]. These modifications can include the attachment of amino groups, carboxyl groups, or other reactive moieties that provide complementary binding sites for enzyme immobilization [13].

The selection of appropriate surface functionalization strategies depends on the specific enzyme requirements and the intended application [14]. Hydrophilic modifications are often preferred for aqueous enzyme systems, while hydrophobic functionalization may be beneficial for enzymes that operate in organic solvents [15]. The density and distribution of functional groups on the coordination polymer surface can be controlled through careful selection of ligand precursors and reaction conditions.

Advanced functionalization techniques include the incorporation of biomimetic recognition elements that can specifically interact with target enzymes. These approaches draw inspiration from natural enzyme-substrate recognition mechanisms and can provide highly selective binding interactions [8]. The development of stimuli-responsive surface modifications enables dynamic control over enzyme binding and release, which is particularly valuable for controlled enzyme delivery applications. Table 2 presents various surface functionalization approaches and their effects on enzyme binding characteristics, highlighting the relationship between surface chemistry and enzymematerial interactions [16].

Functionalization Type	Functional Groups	Binding Mechanism	Enzyme Stability Enhancement
Amino Functionalization	-NH2, -NH3+	Electrostatic, H- bonding	High
Carboxyl Modification	-СОО-, -СООН	Electrostatic, coordination	Medium
Hydrophobic Coating	Alkyl chains	Hydrophobic interactions	Variable
Biomimetic Groups	Peptide sequences	Specific recognition	Very High
Phosphonate Groups	-PO3H2	Coordination bonding	High

Table 2. Surface Functionalization Strategies and Enzyme Binding Effects.

2.3. Metal Node Chemistry and Enzyme Coordination

The metal nodes in coordination polymers serve as critical interaction sites for enzyme binding, providing coordination environments that can directly engage with amino acid residues containing coordinating atoms. The electronic and geometric properties of these metal centers determine the strength and selectivity of enzymematerial interactions [14]. Different metal ions exhibit varying affinities for specific amino acid residues, enabling the design of selective enzyme immobilization systems [17].

The coordination geometry and oxidation state of metal nodes influence the accessibility and reactivity of binding sites for enzyme attachment. Unsaturated metal coordination sites can serve as Lewis acid centers that interact with electron-rich amino acid residues such as histidine, cysteine, and methionine [14]. The reversible nature of coordination bonding allows for dynamic enzyme binding that can adapt to conformational changes during catalytic cycles.

The choice of metal ion also affects the overall stability and biocompatibility of the coordination polymer-enzyme system. Biocompatible metals such as zinc, copper, and iron are often preferred for biological applications due to their low toxicity and natural occurrence in biological systems [10,11]. The redox activity of certain metal nodes can provide additional catalytic functionality that complements the enzyme activity, creating synergistic catalytic systems [12]. Table 3 illustrates the relationship between different metal node types and their enzyme coordination characteristics, demonstrating how metal selection influences enzyme binding and stability [13].

Table 3. Metal Node Properties and Enzyme Coordination Characteristics.

Metal Ion	Coordination Number	Preferred Amino Acids	Binding Strength	Biocompatibility
Zn ²⁺	4-6	His, Cys, Met	Strong	Excellent
Cu^{2+}	4-6	His, Met, Cys	Very Strong	Good
Fe^{3+}	6	His, Asp, Glu	Strong	Excellent
Co ²⁺	4-6	His, Cys	Moderate	Fair
Ni ²⁺	4-6	His, Cys	Strong	Limited

3. Molecular Recognition Mechanisms at Coordination Polymer Surfaces

3.1. Electrostatic Interactions and Protein Binding

Electrostatic interactions represent one of the most significant forces governing enzyme binding to coordination polymer surfaces, arising from the interaction between charged amino acid residues and the electrostatic field generated by the framework structure [18,19]. The distribution of positive and negative charges on both the enzyme surface and the coordination polymer creates complex electrostatic landscapes that determine binding affinity and selectivity. The metal nodes typically carry positive charges that can interact favorably with negatively charged amino acid residues such as aspartate and glutamate, while organic ligands may contribute negative charges that interact with positively charged residues like lysine and arginine.

The pH dependence of electrostatic interactions provides an additional parameter for controlling enzyme binding and activity. At different pH values, the protonation states of both the enzyme and the coordination polymer surface change, leading to variations in electrostatic attraction or repulsion [20]. This pH sensitivity can be exploited to achieve selective enzyme binding or controlled enzyme release in response to environmental changes. The ionic strength of the surrounding medium also influences the strength of electrostatic interactions through screening effects, which must be considered in practical applications.

The spatial arrangement of charges on the coordination polymer surface plays a crucial role in determining the specificity of enzyme recognition. Surfaces with complementary charge distributions to the enzyme binding interface exhibit enhanced binding affinity and improved enzyme orientation [11]. The ability to design coordination polymers with specific charge patterns enables the creation of materials that can selectively recognize target enzymes from complex mixtures. Table 4 summarizes the key parameters affecting electrostatic interactions between enzymes and coordination polymer surfaces, providing insights into the optimization of these interactions for specific applications.

Table 4. Electrostatic Interaction Parameters in Enzyme-Coordination Polymer Systems.

Parameter	Effect on Binding	Optimization Strategy	Typical Range
Surface Charge Density	Direct correlation	Ligand selection	0.1-2.0 e/nm²

pH Sensitivity	Controls binding strength	Buffer system design	pH 4-10
Ionic Strength	Screening effects	Salt concentration control	0.01-1.0 M
Charge Distribution	Selectivity enhancement	Framework topology design	Variable
Dielectric Environment	Interaction strength	Pore functionalization	ε = 2-80

3.2. Hydrogen Bonding and Secondary Structure Interactions

Hydrogen bonding interactions between coordination polymer surfaces and enzyme secondary structures provide additional binding mechanisms that contribute to enzyme stabilization and orientation control [12]. The organic ligands in coordination polymers often contain hydrogen bond donors and acceptors that can form specific interactions with amino acid residues in α -helices and β -sheets. These interactions help maintain the enzyme's native conformation while providing stable anchoring points for immobilization.

The directionality and specificity of hydrogen bonding interactions enable the design of coordination polymer surfaces that can recognize specific enzyme secondary structure motifs. This recognition capability is particularly valuable for applications requiring enzyme orientation control, where the active site must be positioned optimally for substrate access [13]. The strength of hydrogen bonding interactions can be tuned through the selection of appropriate functional groups and their spatial arrangement on the coordination polymer surface [21].

The cooperative nature of hydrogen bonding networks creates stable enzyme-material interfaces that resist denaturation under harsh operating conditions. Multiple hydrogen bonds formed simultaneously between the enzyme and the coordination polymer surface provide enhanced stability compared to single-point interactions [14]. This cooperative binding mechanism is essential for maintaining enzyme activity under challenging environmental conditions, as chemical stabilizers have been shown to prolong urease functionality in the soil–plant system [22].

3.3. Van Der Waals Forces and Hydrophobic Interactions

Van der Waals forces and hydrophobic interactions contribute significantly to the overall binding energy between enzymes and coordination polymer surfaces, particularly in the case of enzymes with large hydrophobic patches or aromatic amino acid clusters [12]. The organic ligands in coordination polymers can provide hydrophobic domains that interact favorably with hydrophobic regions of enzyme surfaces, creating stable binding interfaces through dispersion forces and entropy-driven hydrophobic effects.

The design of coordination polymers with controlled hydrophobic-hydrophilic balance enables the optimization of enzyme binding for specific applications. Enzymes that naturally operate in hydrophobic environments, such as membrane-bound enzymes, may benefit from coordination polymer surfaces with enhanced hydrophobic character [16]. Conversely, water-soluble enzymes may require more hydrophilic surface modifications to maintain their native structure and activity.

The flexibility of organic ligands allows for adaptive interactions with enzyme surfaces, accommodating conformational changes that occur during catalytic cycles. This dynamic binding capability is essential for maintaining enzyme activity over extended periods and multiple catalytic turnover cycles [14]. The reversible nature of van der Waals interactions also enables enzyme release when required, which is valuable for applications involving enzyme recovery and reuse. Table 5 presents the characteristics of different noncovalent interaction types and their contributions to enzyme-coordination polymer binding, highlighting the complementary nature of these interactions in creating stable and functional enzyme-material interfaces.

Interaction Type	Strength (kJ/mol)	Distance Range (Å)	Specificity	Reversibility
Electrostatic	20-40	3-10	High	High
Hydrogen Bonding	10-25	2-4	Very High	High
Van der Waals	2-10	3-6	Low	Very High
Hydrophobic	5-15	4-8	Medium	High
π-π Stacking	5-20	3-5	High	Medium

Table 5. Non-Covalent Interaction Types in Enzyme-Coordination Polymer Systems.

4. Enzyme Immobilization Strategies and Performance Enhancement

4.1. Physical Adsorption Mechanisms

Physical adsorption represents the most straightforward approach for enzyme immobilization on coordination polymer surfaces, relying on non-covalent interactions to achieve stable enzyme binding without chemical modification of the enzyme structure [8]. This method preserves the native enzyme conformation and maintains high catalytic activity while providing sufficient binding strength for practical applications. The reversible nature of physical adsorption allows for enzyme recovery and reuse, which is economically advantageous for large-scale industrial processes.

The efficiency of physical adsorption depends on the complementarity between enzyme surface properties and coordination polymer surface characteristics. Enzymes with high isoelectric points tend to bind more effectively to negatively charged coordination polymer surfaces, while enzymes with low isoelectric points prefer positively charged surfaces [14]. The optimization of adsorption conditions, including pH, ionic strength, and temperature, is crucial for achieving maximum enzyme loading and stability.

The porous structure of coordination polymers provides protected environments for physically adsorbed enzymes, shielding them from harsh external conditions that could lead to denaturation. The confinement effects within the pores can also enhance enzyme stability by restricting unfolding pathways and maintaining the native protein structure [10]. However, the accessibility of substrates to immobilized enzymes must be carefully considered to avoid mass transfer limitations that could reduce catalytic efficiency.

4.2. Covalent Binding Approaches

Covalent immobilization strategies involve the formation of permanent chemical bonds between enzyme functional groups and reactive sites on coordination polymer surfaces, providing enhanced stability and resistance to enzyme leaching [12]. The most commonly targeted amino acid residues for covalent attachment include lysine, cysteine, and tyrosine, which contain reactive functional groups that can participate in coupling reactions. The selection of appropriate coupling chemistry is critical for maintaining enzyme activity while achieving stable immobilization.

The introduction of spacer molecules between the enzyme and the coordination polymer surface can help maintain enzyme flexibility and reduce steric hindrance effects that might interfere with catalytic activity. These spacers also provide distance control between the enzyme and the surface, allowing for optimal orientation and substrate accessibility [10]. The length and chemical nature of the spacer can be tailored to match the specific requirements of different enzyme systems.

Multipoint covalent attachment strategies can provide enhanced enzyme stability by forming multiple bonds between the enzyme and the support material. This approach creates a more rigid enzyme-support interface that can resist conformational changes and maintain activity under harsh operating conditions [1]. However, care must be taken to avoid over-immobilization that could restrict essential enzyme flexibility required for catalytic turnover.

4.3. Encapsulation and Entrapment Methods

Enzyme encapsulation within coordination polymer matrices offers unique advantages for enzyme protection and controlled release applications. The three-dimensional framework structure can be assembled around enzymes through carefully controlled synthesis conditions, creating composite materials where enzymes are trapped within the porous network [12]. This approach provides maximum protection against proteolytic degradation and harsh environmental conditions while maintaining enzyme accessibility to substrates.

The size-selective properties of coordination polymer pores enable the retention of large enzyme molecules while allowing free passage of smaller substrate and product molecules. This molecular sieving effect is particularly valuable for applications requiring enzyme retention combined with efficient substrate conversion [6]. The pore size can be tuned through ligand selection and synthesis conditions to match the dimensions of specific enzyme systems.

Dynamic encapsulation strategies involve the use of stimuli-responsive coordination polymers that can undergo reversible structural changes in response to external triggers such as pH, temperature, or light. These materials enable controlled enzyme release for therapeutic applications or enzyme recovery for reuse in industrial processes [14]. The ability to modulate enzyme accessibility through external stimuli provides additional control over catalytic activity and selectivity.

5. Applications and Future Perspectives

5.1. Biosensing Applications

Coordination polymer-enzyme hybrid materials have demonstrated exceptional potential for biosensing applications, where the selective molecular recognition capabilities of enzymes are combined with the signal transduction properties of coordination polymers [6]. The high surface area and controlled porosity of coordination polymers enable the immobilization of multiple enzyme types within a single framework, creating multifunctional sensing platforms capable of detecting various analytes simultaneously. The optical and electronic properties of coordination polymers can be modulated by enzyme catalytic activity, providing direct signal transduction mechanisms for biosensor applications.

The stability enhancement provided by coordination polymer immobilization extends the operational lifetime of enzyme-based biosensors, making them more suitable for continuous monitoring applications. The protective environment within the coordination polymer framework shields enzymes from interfering substances and harsh environmental conditions that typically limit biosensor performance [11]. Advanced biosensor designs incorporate stimuli-responsive coordination polymers that can modulate enzyme activity in response to target analyte concentrations, providing improved sensitivity and selectivity.

The integration of coordination polymer-enzyme systems with modern detection technologies has led to the development of highly sensitive and selective biosensors for medical diagnostics, environmental monitoring, and food safety applications. These systems can achieve detection limits in the nanomolar to picomolar range while maintaining excellent specificity for target analytes [12]. The scalable synthesis of coordination polymers enables the mass production of standardized biosensor components with consistent performance characteristics.

5.2. Biocatalytic Systems for Industrial Applications

The application of coordination polymer-immobilized enzymes in industrial biocatalysis has shown significant promise for improving process efficiency and reducing production costs [10]. The enhanced thermal and chemical stability provided by coordination polymer immobilization enables the use of enzymes under harsh industrial

conditions that would normally lead to rapid enzyme deactivation. The recyclability of immobilized enzyme systems provides economic advantages through reduced enzyme consumption and simplified product purification processes.

The development of continuous flow reactors incorporating coordination polymer-enzyme composites has demonstrated superior performance compared to traditional batch processes. The controlled pore structure of coordination polymers ensures uniform enzyme distribution and optimal mass transfer characteristics, leading to improved reaction rates and higher product yields. The modular nature of coordination polymer synthesis allows for the rapid optimization of reactor systems for specific industrial applications. Table 6 summarizes the key performance parameters achieved in various industrial biocatalytic applications using coordination polymer-immobilized enzymes, highlighting the advantages of this immobilization approach.

Table 6. Performance Comparison of Coordination Polymer-Immobilized Enzymes in Industrial Applications.

Application	Enzyme Type	Activity Retention (%)	Stability Improvement	Reuse Cycles	Economic Benefit
Pharmaceutical Synthesis	Lipase	85-95	10-fold	>50	High
Food Processing	Amylase	90-98	5-fold	>30	Medium
Environmental Remediation	Peroxidase	75-85	15-fold	>40	High
Biofuel Production	Cellulase	80-90	8-fold	>25	Very High
Chemical Manufacturing	Transaminase	88-95	12-fold	>45	High

5.3. Therapeutic Enzyme Delivery Systems

The biocompatibility and controlled release properties of coordination polymerenzyme systems make them attractive candidates for therapeutic enzyme delivery applications. The protective environment provided by coordination polymer encapsulation can enhance enzyme stability in biological fluids while enabling targeted delivery to specific tissues or organs [14]. The ability to control enzyme release kinetics through coordination polymer design parameters offers opportunities for optimizing therapeutic efficacy and minimizing side effects.

Advanced therapeutic systems incorporate targeting ligands on coordination polymer surfaces that can recognize specific cell surface receptors, enabling selective enzyme delivery to diseased tissues. This targeted approach reduces systemic enzyme exposure and enhances therapeutic effectiveness while minimizing adverse reactions [13]. The biodegradable nature of certain coordination polymers allows for complete clearance of the delivery system after therapeutic enzyme release, reducing long-term accumulation concerns.

The development of stimuli-responsive coordination polymer-enzyme systems enables triggered enzyme release in response to disease-specific environmental conditions such as altered pH, elevated temperature, or increased oxidative stress. These smart delivery systems can provide enhanced therapeutic selectivity by releasing active enzymes only in pathological environments [14]. The combination of multiple therapeutic enzymes within single coordination polymer carriers offers opportunities for synergistic treatment approaches that address multiple aspects of disease pathology simultaneously.

6. Conclusion

The comprehensive investigation of coordination polymer surface chemistry and enzyme interaction mechanisms reveals significant potential for advancing

biotechnological applications through rationally designed enzyme-material interfaces. The unique structural properties of coordination polymers, including their tunable porosity, diverse metal node chemistry, and functionalizable organic ligands, provide unprecedented opportunities for creating optimized enzyme immobilization platforms. The molecular recognition capabilities demonstrated by these materials enable selective enzyme binding while maintaining catalytic activity and enhancing operational stability.

The fundamental understanding of interaction mechanisms governing enzyme-coordination polymer interfaces has established clear design principles for optimizing material performance. The complementary nature of electrostatic interactions, hydrogen bonding, and van der Waals forces creates robust binding interfaces that can accommodate enzyme conformational dynamics while providing sufficient stability for practical applications. The ability to control these interactions through systematic surface modifications opens new avenues for creating application-specific enzyme immobilization systems.

The successful implementation of coordination polymer-enzyme systems in biosensing, biocatalysis, and therapeutic delivery applications demonstrates the practical significance of this research field. The enhanced enzyme stability, improved recyclability, and superior performance characteristics achieved through coordination polymer immobilization represent substantial advances over conventional enzyme immobilization approaches. The scalable synthesis methods and modular design principles established for these materials facilitate their translation from laboratory research to industrial applications.

Future developments in this field will likely focus on creating increasingly sophisticated coordination polymer architectures that can provide multiple functionalities within single materials. The integration of stimuli-responsive elements, targeting capabilities, and multi-enzyme systems will enable the development of smart materials that can adapt their behavior in response to changing environmental conditions. The continued advancement of computational design tools will accelerate the discovery and optimization of new coordination polymer-enzyme systems with enhanced performance characteristics for emerging biotechnological applications.

References

- 1. A. Kondo, S. Noro, H. Kajiro, and H. Kanoh, "Structure- and phase-transformable coordination polymers/metal complexes with fluorinated anions," *Coordination Chemistry Reviews*, vol. 471, p. 214728, 2022, doi: 10.1016/j.ccr.2022.214728.
- 2. G. Xie, W. Guo, Z. Fang, Z. Duan, X. Lang, D. Liu, G. Mei, Y. Zhai, X. Sun, and X. Lu, "Dual-Metal Sites Drive Tandem Electrocatalytic CO2 to C2+ Products," *Angewandte Chemie*, vol. 136, no. 47, p. e202412568, 2024, doi: 10.1002/ange.202412568.
- 3. M. Guo, K. Liu, K. Wang, J. Liu, P. Wang, F. Zhao, and L. Zhang, "Sacrificial Doping of Interstitial Lithium Facilitated Undoped Amorphous/Crystalline RuO2 Toward Boosted Acidic Water Oxidation," *Advanced Energy Materials*, p. e03199, 2025, doi: 10.1002/aenm.202503199.
- 4. C. Chen, L. Jiao, D. Yan, X. Jia, R. Li, L. Hu, X. Li, P. Zong, C. Zhu, Y. Zhai, et al., "Metastable Sn-O-Pd sites modulating the seesaw effect specifically activate H₂O₂ for the identification of plasticizers," *Advanced Functional Materials*, p. e06250, 2025, doi: 10.1002/adfm.202506250.
- 5. H. Huang, X. Jing, J. Deng, C. Meng, and C. Duan, "Enzyme-Inspired Coordination Polymers for Selective Oxidization of C(sp3)–H Bonds via Multiphoton Excitation," *Journal of the American Chemical Society*, vol. 145, no. 4, pp. 2170–2182, 2023, doi: 10.1021/jacs.2c09348.
- 6. N. Guo, L. Jiao, L. Hu, D. Yan, C. Chen, P. Zong, X. Shi, Y. Zhai, Z. Zhu, and X. Lu, "Deciphering pyridinic N-mediated inhibition mode in platinum nanozymes for pesticide distinction," *Small*, p. 2505731, 2025, doi: 10.1002/smll.202505731.
- 7. S. Abtahi, Nayanathara Hendeniya, S. T. Mahmud, G. Mogbojuri, Chizoba Livina Iheme, and B. Chang, "Metal-Coordinated Polymer–Inorganic Hybrids: Synthesis, Properties, and Application," *Polymers*, vol. 17, no. 2, pp. 136–136, 2025, doi: 10.3390/polym17020136.
- 8. G. Mei, Z. Sun, Z. Fang, Y. Dan, X. Lu, J. Tang, W. Guo, Y. Zhai, and Z. Zhu, "CoNi alloy nanoparticles encapsulated within N-doped carbon nanotubes for efficiently pH-universal CO₂ electroreduction," *Small*, vol. 21, no. 31, p. 2504086, 2025, doi: 10.1002/smll.202504086.
- 9. M. Bergedahl, P. Narea, J. Llanos, R. Pulido, N. Naveas, and P. Amo-Ochoa et al., "Synthesis, Crystal Structures, Hirshfeld Surface Analysis, Computational Investigations, Thermal Properties, and Electrochemical Analysis of Two New Cu(II) and

- Co(II) Coordination Polymers with the Ligand 5-Methyl-1-(pyridine-4-yl-methyl)-1H-1,2,3-triazole-4-carboxylate," *International Journal of Molecular Sciences*, vol. 26, no. 4, pp. 1671–1671, 2025, doi: 10.3390/ijms26041671.
- 10. X. Zhou, L. Liu, H. Kou, S. Zheng, M. Song, and J. Lu et al., "A Multifunctional 3D Supermolecular Co Coordination Polymer With Potential for CO2 Adsorption, Antibacterial Activity, and Selective Sensing of Fe3+/Cr3+ Ions and TNP," *Frontiers in Chemistry*, vol. 9, 2021, doi: 10.3389/fchem.2021.678993.
- 11. L. Hu, R. Li, C. Chen, X. Jia, X. Li, L. Jiao, C. Zhu, X. Lu, Y. Zhai, and S. Guo, "Cu single sites on BO₂ as thyroid peroxidase mimicking for iodotyrosine coupling and pharmaceutical assess," *Science Bulletin*, 2025, doi: 10.1016/j.scib.2025.03.010.
- 12. F. Ding, C. Ma, W.-L. Duan, and J. Luan, "Second auxiliary ligand induced two coppor-based coordination polymers and urease inhibition activity," *Journal of Solid State Chemistry*, vol. 331, pp. 124537–124537, 2023, doi: 10.1016/j.jssc.2023.124537.
- 13. S. Zhang, X. Li, Q. Yuan, F. Secundo, Y. Li, and H. Liang, "Step-wise immobilization of multi-enzymes by zirconium-based coordination polymer in situ self-assembly and specific absorption," *Journal of Inorganic Biochemistry*, vol. 208, p. 111093, 2020, doi: 10.1016/j.jinorgbio.2020.111093.
- 14. A. Rodriguez-Abetxuko, D. Sánchez-deAlcázar, P. Muñumer, and A. Beloqui, "Tunable Polymeric Scaffolds for Enzyme Immobilization," *Frontiers in Bioengineering and Biotechnology*, vol. 8, 2020, doi: 10.3389/fbioe.2020.00830.
- 15. F. Ding, N. Su, C. Ma, B. Li, W.-L. Duan, and J. Luan, "Fabrication of two novel two-dimensional copper-based coordination polymers regulated by the 'V'-shaped second auxiliary ligands as high-efficiency urease inhibitors," *Inorganic Chemistry Communications*, vol. 170, p. 113319, 2024, doi: 10.1016/j.inoche.2024.113319.
- 16. M. P. Snelgrove and M. J. Hardie, "Coordination polymers with embedded recognition sites: lessons from cyclotriveratrylene-type ligands," *CrystEngComm*, vol. 23, no. 23, pp. 4087–4102, 2021, doi: 10.1039/d1ce00471a.
- 17. A. Ciferri, "Molecular recognition at interfaces. Adhesion, wetting and bond scrambling," *Frontiers in Chemistry*, vol. 10, 2022, doi: 10.3389/fchem.2022.1088613.
- 18. L. Camilli, C. Hogan, D. Romito, L. Persichetti, A. Caporale, and Maurizia Palummo et al., "On-Surface Molecular Recognition Driven by Chalcogen Bonding," *JACS Au*, vol. 4, no. 6, pp. 2115–2121, 2024, doi: 10.1021/jacsau.4c00325.
- 19. J. Yu and D. D. Boehr, "Regulatory mechanisms triggered by enzyme interactions with lipid membrane surfaces," *Frontiers in Molecular Biosciences*, vol. 10, 2023, doi: 10.3389/fmolb.2023.1306483.
- 20. H.-X. Zhou and X. Pang, "Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation," *Chemical reviews*, vol. 118, no. 4, pp. 1691–1741, 2018, doi: 10.1021/acs.chemrev.7b00305.
- 21. Fabio, K. Sanches, R. Pinheiro-Aguiar, V. C. Almeida, and Ícaro Putinhon Caruso, "Protein Surface Interactions—Theoretical and Experimental Studies," *Frontiers in Molecular Biosciences*, vol. 8, 2021, doi: 10.3389/fmolb.2021.706002.
- 22. F. Ding, C. Y. Hung, J. K. Whalen, L. Wang, Z. Wei, L. Zhang, and Y. Shi, "Potential of chemical stabilizers to prolong urease inhibition in the soil–plant system," *Journal of Plant Nutrition and Soil Science*, vol. 185, no. 3, pp. 384–390, 2022, doi: 10.1002/jpln.202100314.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of GBP and/or the editor(s). GBP and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.